Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 22(6): 658-672, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33934492

RESUMO

Cucurbit downy mildew (DM), caused by the obligate biotroph Pseudoperonospora cubensis, is a destructive disease in cucumber. A valuable source of DM resistance is the Indian cucumber accession PI 197088, which harbours several quantitative trait loci (QTLs) contributing to quantitatively inherited DM resistance. With a combination of fine-mapping and transcriptomics, we identified Amino Acid Permease 2A (CsAAP2A) as a candidate gene for QTL DM4.1.3. Whole-genome and Sanger sequencing revealed the insertion of a Cucumis Mu-like element (CUMULE) transposon in the allele of the resistant near-isogenic line DM4.1.3. To confirm whether loss of CsAAP2A contributes to partial DM resistance, we performed targeting induced local lesions in genomes on a DM-susceptible cucumber genotype to identify an additional csaap2a mutant, which indeed was partially DM resistant. In view of the loss of the putative function as amino acid transporter, we measured amino acids in leaves. We found that DM-inoculated leaves of line DM4.1.3 (with the csaap2a mutation) contained significantly fewer amino acids than wild-type cucumber. The decreased flow of amino acids towards infected leaves in csaap2a plants compared to the wild type might explain the resistant phenotype of the mutant, as this would limit the available nutrients for the pathogen and thereby its fitness. To examine whether AAP genes play a conserved role as susceptibility factors in plant-oomycete interactions, we made targeted mutations in two AAP genes from tomato and studied the effect on susceptibility to Phytophthora infestans. We conclude that not only CsAAP2A but also SlAAP5A/SlAAP5B are susceptibility genes for oomycete pathogens.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Cucumis sativus/genética , Interações Hospedeiro-Patógeno , Oomicetos/fisiologia , Doenças das Plantas/parasitologia , Solanum lycopersicum/genética , Alelos , Sistemas de Transporte de Aminoácidos/genética , Transporte Biológico , Cucumis sativus/parasitologia , Cucumis sativus/fisiologia , Elementos de DNA Transponíveis/genética , Resistência à Doença/genética , Suscetibilidade a Doenças , Genótipo , Solanum lycopersicum/parasitologia , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética
2.
Front Plant Sci ; 11: 569876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193500

RESUMO

One of the biggest problems in cucumber cultivation is cucurbit downy mildew (DM), caused by the obligate biotroph Pseudoperonospora cubensis. Whereas DM in cucumber was previously efficiently controlled by the dm-1 gene from Indian cucumber accession PI 197087, this resistance was broken by new DM strains, prompting the search for novel sources of resistance. A promising source of resistance is the wild cucumber accession PI 197088. It was previously shown that DM resistance in this genotype inherits polygenically. In this paper, we put the focus on one of the QTL, DM4.1 that is located on chromosome 4. QTL DM4.1 was shown to consist of three subQTL: DM4.1.1 affected pathogen-induced necrosis, DM4.1.2 was shown to have an additive effect on sporulation, and DM4.1.3 had a recessive effect on chlorosis as well as an effect on sporulation. Near-isogenic lines (NILs) were produced by introgressing the subQTLs into a susceptible cucumber line (HS279) with good horticultural traits. Transcriptomic analysis revealed that many genes in general, and defense pathway genes in particular, were differentially expressed in NIL DM4.1.1/.2 compared to NIL DM4.1.3 and the susceptible parent HS279. This indicates that the resistance from subQTL DM4.1.1 and/or subQTL DM4.1.2 likely involves defense signaling pathways, whereas resistance due to subQTL DM4.1.3 is more likely to be independent of known defense pathways. Based on fine-mapping data, we identified the RLK gene CsLRK10L2 as a likely candidate for subQTL DM4.1.2, as this gene was found to have a loss-of-function mutation in the susceptible parent HS279, and was strongly upregulated by P. cubensis inoculation in NIL DM4.1.1/.2. Heterologous expression of this gene triggered necrosis, providing further evidence that this gene is indeed causal for subQTL DM4.1.2.

3.
Mol Breed ; 37(5): 58, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28479863

RESUMO

Global warming has become a worldwide concern due to its adverse effects on agricultural output. In particular, long-term mildly high temperatures interfere with sexual reproduction and thus fruit and seed set. To uncover the genetic basis of observed variation in tolerance against heat, a bi-parental F2 mapping population from two contrasting cultivars, i.e. Nagcarlang and NCHS-1, was generated and phenotyped under continuous mild heat conditions for a number of traits underlying reproductive success, i.e. pollen viability, pollen number, style length, anther length, style protrusion, female fertility and flowering characteristics, i.e. inflorescence number and flowers per inflorescence. Quantitative trait loci (QTLs) were identified for most of these traits, including a single, highly significant one for pollen viability, which accounted for 36% of phenotypic variation in the population and modified pollen viability under high temperature with around 20%. QTLs for some traits colocalised, indicating trait dependency or pleiotropic-effect loci. We conclude that a limited set of major genes determines differences in performance of reproductive traits under continuous mild heat in tomato. The results contribute to our fundamental understanding of pollen thermotolerance and may support development of more heat-tolerant tomato varieties.

4.
Plant Reprod ; 29(1-2): 67-79, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26874710

RESUMO

KEY MESSAGE: Thermotolerant crop research. Global warming has become a serious worldwide threat. High temperature is a major environmental factor limiting crop productivity. Current adaptations to high temperature via alterations to technical and management systems are insufficient to sustain yield. For this reason, breeding for heat-tolerant crops is in high demand. This review provides an overview of the effects of high temperature on plant physiology, fertility and crop yield and discusses the strategies for breeding heat-tolerant cultivars. Generating thermotolerant crops seems to be a challenging task as heat sensitivity is highly variable across developmental stages and processes. In response to heat, plants trigger a cascade of events, switching on numerous genes. Although breeding has made substantial advances in developing heat-tolerant lines, the genetic basis and diversity of heat tolerance in plants remain largely unknown. The development of new varieties is expensive and time-consuming, and knowledge of heat tolerance mechanisms would aid the design of strategies to screen germplasm for heat tolerance traits. However, gains in heat tolerance are limited by the often narrow genetic diversity. Exploration and use of wild relatives and landraces in breeding can increase useful genetic diversity in current crops. Due to the complex nature of plant heat tolerance and its immediate global concern, it is essential to face this breeding challenge in a multidisciplinary holistic approach involving governmental agencies, private companies and academic institutions.


Assuntos
Produtos Agrícolas/fisiologia , Melhoramento Vegetal , Termotolerância , Mudança Climática , Temperatura Alta , Termotolerância/genética
5.
BMC Plant Biol ; 15: 243, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26453551

RESUMO

BACKGROUND: Powdery mildew (PM) is an important disease of cucumber (Cucumis sativus L.). CsaMLO8 was previously identified as a candidate susceptibility gene for PM in cucumber, for two reasons: 1) This gene clusters phylogenetically in clade V, which has previously been shown to harbour all known MLO-like susceptibility genes for PM identified in dicot species; 2) This gene co-localizes with a QTL on chromosome 5 for hypocotyl-specific resistance to PM. METHODS: CsaMLO8 alleles from susceptible and resistant cucumber were cloned and transformed to mlo-mutant tomato. Cucumber seedlings were inoculated with Podosphaera xanthii, tissues were studied for CsaMLO8 expression at several timepoints post inoculation using qRT-PCR. The occurrence of the observed loss-of-function allele of CsaMLO8 in resequenced cucumber accessions was studied in silico. RESULTS: We cloned CsaMLO8 alleles from susceptible and resistant cucumber genotypes, the latter carrying the QTL for hypocotyl resistance. We found that insertion of a non-autonomous Class LTR retrotransposable element in the resistant genotype leads to aberrant splicing of CsaMLO8 mRNA. Heterologous expression of the wild-type allele of CsaMLO8 in a tomato mlo-mutant restored PM susceptibility. However, heterologous expression of the CsaMLO8 allele cloned from the resistant cucumber genotype failed to restore PM susceptibility. Furthermore we showed that inoculation of susceptible cucumber with the PM pathogen Podosphaera xanthii induced transcriptional upregulation of CsaMLO8 in hypocotyl tissue, but not in cotyledon or leaf tissue. This coincides with the observation that the QTL at the CsaMLO8-locus causes full resistance in hypocotyl tissue, but only partial resistance in cotyledons and true leafs. We studied the occurrence of the loss-of-function allele of CsaMLO8 in cucumber germplasm by an in silico approach using resequencing data of a collection of 115 cucumber accessions, and found that this allele was present in 31 out of 115 accessions. CONCLUSIONS: CsaMLO8 was characterised as a functional susceptibility gene to PM, particularly in the hypocotyl where it was transcriptionally upregulated upon inoculation with the PM pathogen P. xanthii. A loss-of-function mutation in CsaMLO8 due to the insertion of a transposable element was found to be the cause of hypocotyl resistance to PM. This particular allele of CsaMLO8 was found to occur in 27 % of the resequenced cucumber accessions.


Assuntos
Cucumis sativus/genética , Cucumis sativus/microbiologia , Elementos de DNA Transponíveis/genética , Resistência à Doença/genética , Hipocótilo/microbiologia , Mutagênese Insercional/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Alelos , Ascomicetos/fisiologia , Sequência de Bases , Clonagem Molecular , Teste de Complementação Genética , Genoma de Planta , Genótipo , Hipocótilo/genética , Solanum lycopersicum/genética , Dados de Sequência Molecular , Mutação/genética , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Transcrição Gênica
6.
J Exp Bot ; 66(11): 3405-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25883382

RESUMO

The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Divisão Celular , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
7.
Front Plant Sci ; 5: 466, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25278945

RESUMO

Climacteric fruit ripening, as it occurs in many fruit crops, depends on a rapid, autocatalytic increase in ethylene production. This agriculturally important process has been studied extensively, with tomato simultaneously acting both as a model species and target crop for modification. In tomato, the ethylene biosynthetic genes ACC SYNTHASE2 (ACS2) and ACS4 are highly expressed during fruit ripening, with a combined loss of both ACS2 and ACS4 activity preventing generation of the ethylene burst necessary for fruit ripening. However, the individual roles and importance of ACS2 and ACS4 have not been determined. In this study, we examined specifically the role of ACS4 by comparing the phenotype of an acs4 mutant firstly with that of the wild-type, and secondly with two novel ripening-inhibitor (rin) mutants. Ethylene production during ripening was significantly reduced in both acs4-1, and rin lines, with rin genotypes showing the weaker ethylene burst. Also i) the time between anthesis and the start of fruit ripening and ii) the time required to progress through ripening were significantly longer in acs4-1 than in the wild type, but shorter than in the strongest rin mutant. The delay in ripening was reflected in the lower expression of ripening-related transcripts during the mature green and light red ripening stages. Furthermore, expression of ACS2 and ACS4 was strongly dependent on a functional RIN gene, while ACS2 expression was largely independent of ACS4. Altogether, we show that ACS4 is necessary for normal progression of tomato fruit ripening and that mutation of this gene may provide a useful means for altering ripening traits.

8.
Mol Breed ; 29(3): 801-812, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22408384

RESUMO

In tomato, carotenoids are important with regard to major breeding traits such as fruit colour and human health. The enzyme phytoene synthase (PSY1) directs metabolic flux towards carotenoid synthesis. Through TILLING (Targeting Induced Local Lesions IN Genomes), we have identified two point mutations in the Psy1 gene. The first mutation is a knockout allele (W180*) and the second mutation leads to an amino acid substitution (P192L). Plants carrying the Psy1 knockout allele show fruit with a yellow flesh colour similar to the r, r mutant, with no further change in colour during ripening. In the line with P192L substitution, fruit remain yellow until 3 days post-breaker and eventually turn red. Metabolite profiling verified the absence of carotenoids in the W180* line and thereby confirms that PSY1 is the only enzyme introducing substrate into the carotenoid pathway in ripening fruit. More subtle effects on carotenoid accumulation were observed in the P192L line with a delay in lycopene and ß-carotene accumulation clearly linked to a very slow synthesis of phytoene. The observation of lutein degradation with ripening in both lines showed that lutein and its precursors are still synthesised in ripening fruit. Gene expression analysis of key genes involved in carotenoid biosynthesis revealed that expression levels of genes in the pathway are not feedback-regulated by low levels or absence of carotenoid compounds. Furthermore, protein secondary structure modelling indicated that the P192L mutation affects PSY1 activity through misfolding, leading to the low phytoene accumulation.

9.
BMC Genomics ; 12: 384, 2011 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-21801454

RESUMO

BACKGROUND: Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many crop plants. Tolerance to such a stress can be achieved by constitutive gene expression or by rapid changes in gene expression, which ultimately leads to protection against thermal damage. We have used cDNA-AFLP and microarray analyses to compare the early response of the tomato meiotic anther transcriptome to moderate heat stress conditions (32°C) in a heat-tolerant and a heat-sensitive tomato genotype. In the light of the expected global temperature increases, elucidating such protective mechanisms and identifying candidate tolerance genes can be used to improve breeding strategies for crop tolerance to heat stress. RESULTS: The cDNA-AFLP analysis shows that 30 h of moderate heat stress (MHS) alter the expression of approximately 1% of the studied transcript-derived fragments in a heat-sensitive genotype. The major effect is gene down-regulation after the first 2 h of stress. The microarray analysis subsequently applied to elucidate early responses of a heat-tolerant and a heat-sensitive tomato genotype, also shows about 1% of the genes having significant changes in expression after the 2 h of stress. The tolerant genotype not only reacts with moderate transcriptomic changes but also exhibits constitutively higher expression levels of genes involved in protection and thermotolerance. CONCLUSION: In contrast to the heat-sensitive genotype, the heat-tolerant genotype exhibits moderate transcriptional changes under moderate heat stress. Moreover, the heat-tolerant genotype also shows a different constitutive gene expression profile compared to the heat-sensitive genotype, indicating genetic differences in adaptation to increased temperatures. In the heat-tolerant genotype, the majority of changes in gene expression is represented by up-regulation, while in the heat-sensitive genotype there is a general trend to down-regulate gene expression upon MHS. The putative functions associated with the genes identified by cDNA-AFLP or microarray indicate the involvement of heat shock, metabolism, antioxidant and development pathways. Based on the observed differences in response to MHS and on literature sources, we identified a number of candidate transcripts involved in heat-tolerance.


Assuntos
Flores/genética , Flores/fisiologia , Resposta ao Choque Térmico/genética , Meiose/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Transcrição Gênica , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Clonagem Molecular , DNA Complementar/genética , Flores/citologia , Genes de Plantas/genética , Genótipo , Solanum lycopersicum/citologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reprodutibilidade dos Testes
10.
J Exp Bot ; 62(2): 617-26, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937732

RESUMO

Transgenic tomato plants (Solanum lycopersicum L.) with reduced mRNA levels of AUXIN RESPONSE FACTOR 7 (SlARF7) form parthenocarpic fruits with morphological characteristics that seem to be the result of both increased auxin and gibberellin (GA) responses during fruit growth. This paper presents a more detailed analysis of these transgenic lines. Gene expression analysis of auxin-responsive genes show that SlARF7 may regulate only part of the auxin signalling pathway involved in tomato fruit set and development. Also, part of the GA signalling pathway was affected by the reduced levels of SlARF7 mRNA, as morphological and molecular analyses display similarities between GA-induced fruits and fruits formed by the RNAi SlARF7 lines. Nevertheless, the levels of GAs were strongly reduced compared with that in seeded fruits. These findings indicate that SlARF7 acts as a modifier of both auxin and gibberellin responses during tomato fruit set and development.


Assuntos
Frutas/crescimento & desenvolvimento , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/genética
11.
J Exp Bot ; 61(2): 453-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19854799

RESUMO

The high sensitivity of male reproductive cells to high temperatures may be due to an inadequate heat stress response. The results of a comprehensive expression analysis of HsfA2 and Hsp17-CII, two important members of the heat stress system, in the developing anthers of a heat-tolerant tomato genotype are reported here. A transcriptional analysis at different developmental anther/pollen stages was performed using semi-quantitative and real-time PCR. The messengers were localized using in situ RNA hybridization, and protein accumulation was monitored using immunoblot analysis. Based on the analysis of the gene and protein expression profiles, HsfA2 and Hsp17-CII are finely regulated during anther development and are further induced under both short and prolonged heat stress conditions. These data suggest that HsfA2 may be directly involved in the activation of protection mechanisms in the tomato anther during heat stress and, thereby, may contribute to tomato fruit set under adverse temperatures.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico Pequenas/metabolismo , Temperatura Alta , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico
12.
J Exp Bot ; 60(5): 1523-32, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19321650

RESUMO

The initiation of tomato fruit growth, fruit set, is very sensitive to environmental conditions. Therefore, an understanding of the mechanisms that regulate this process can facilitate the production of this agriculturally valuable fruit crop. Over the years, it has been well established that tomato fruit set depends on successful pollination and fertilization, which trigger the fruit developmental programme through the activation of the auxin and gibberellin signalling pathways. However, the exact role of each of these two hormones is still poorly understood, probably because only few of the signalling components involved have been identified so far. Recent research on fruit set induced by hormone applications has led to new insights into hormone biosynthesis and signalling. The aim of this review is to consolidate the current knowledge on the role of auxin and gibberellin in tomato fruit set.


Assuntos
Frutas/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais
13.
Plant J ; 57(1): 160-70, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18778404

RESUMO

Auxin response factors (ARFs) are encoded by a gene family of transcription factors that specifically control auxin-dependent developmental processes. A tomato ARF gene, homologous to Arabidopsis NPH4/ARF7 and therefore designated as Solanum lycopersicum ARF7 (SlARF7), was found to be expressed at a high level in unpollinated mature ovaries. More detailed analysis of tomato ovaries showed that the level of SlARF7 transcript increases during flower development, remains at a constant high level in mature flowers, and is down-regulated within 48 h after pollination. Transgenic plants with decreased SlARF7 mRNA levels formed seedless (parthenocarpic) fruits. These fruits were heart-shaped and had a rather thick pericarp due to increased cell expansion, compared with the pericarp of wild-type fruits. The expression analysis, together with the parthenocarpic fruit phenotype of the transgenic lines, suggests that, in tomato, SlARF7 acts as a negative regulator of fruit set until pollination and fertilization have taken place, and moderates the auxin response during fruit growth.


Assuntos
Frutas/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA de Plantas/genética , Alinhamento de Sequência , Fatores de Transcrição/genética
14.
New Phytol ; 177(1): 128-141, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18078472

RESUMO

Ethylene and gibberellins (GAs) control similar developmental processes in plants. The role of ethylene is at least in part to regulate the accumulation of DELLA proteins, key regulators of plant growth, which suppress the GA response. To expand our knowledge of ethylene-GA crosstalk and to reveal how the modulation of the ethylene and GA pathways affects global plant growth, the gibberellin-insensitive (gai), ethylene-overproducing 2-1 (eto2-1) double mutant, which has decreased GA signalling (resulting from gai) and increased ethylene biosynthesis (resulting from eto2-1), was characterized. Both single mutations resulted in reduced elongation growth. The double mutant showed synergistic responses in root and shoot growth, in induction of floral transition, and in inflorescence length, showing that crosstalk between the two pathways occurs in different plant organs throughout development. Furthermore, the altered ethylene-GA interactions affected root-shoot communication, as evidenced by an enhanced shoot:root ratio in the double mutant. When compared with both single mutants and the wild type, double mutants had enhanced content of active GA(4) at both the seedling and the rosette stages, and, unlike the gai mutant, they were sensitive to GA treatment. Finally, it was shown that synergistic responses in the double mutant were not caused by elevated ethylene biosynthesis but that, in the light, enhanced sensitivity to ethylene may, at least in part, be responsible for the observed phenotype.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Etilenos/biossíntese , Giberelinas/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Etilenos/farmacologia , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula , Fatores de Tempo
15.
New Phytol ; 177(1): 60-76, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18028300

RESUMO

Plant hormones are considered to be important mediators of the fruit developmental signal after pollination. The role of phytohormones in tomato (Solanum lycopersicum) fruit set was investigated here. Transcriptome analysis of ovaries was performed using two complementary approaches: cDNA-amplified fragment length polymorphism (AFLP) and microarray analysis. The gene expression profiles obtained suggest that, in addition to auxin and gibberellin, ethylene and abscisic acid (ABA) are involved in regulating fruit set. Before fruit development, many genes involved in biotic and abiotic responses are active in the ovary. In addition, genes involved in ethylene and ABA biosynthesis were strongly expressed, suggesting relatively high ethylene and ABA concentrations before fruit set. Induction of fruit development, either by pollination or by gibberellin application, attenuated expression of all ethylene and ABA biosynthesis and response genes within 24 h. It is proposed that the function of ABA and ethylene in fruit set might be antagonistic to that of auxin and gibberellin in order to keep the ovary in a temporally protected and dormant state; either to protect the ovary tissue or to prevent fruit development before pollination and fertilization occur.


Assuntos
Flores/genética , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Flores/efeitos dos fármacos , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Genes de Plantas/genética , Solanum lycopersicum/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
16.
Planta ; 226(2): 485-98, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17351788

RESUMO

The complexity of hormonal responses and their functional overlap support the presence of an intensive cross-talk between hormone signalling pathways. A detailed analysis of responses induced by ethylene and gibberellin (GA) in a GA-insensitive mutant (gai), an ethylene-resistant mutant (etr1-3), the gai etr1-3 double-mutant, and in wild-type Arabidopsis thaliana plants, revealed multiple interactions between ethylene and GA signal transduction pathways. Ethylene insensitive mutants and wild-type plants treated with 1-methylcyclopropene (1-MCP), an ethylene perception inhibitor, displayed a stronger responsiveness of genes differentially regulated by GA. In addition, microarray-analysis showed that the GA-response in an ethylene-insensitive background is different from that in the wild-type, confirming the importance of ethylene in a plant's response towards GA. In this paper, we present a number of genes with an altered response-pattern as a direct consequence of cross-talk between ethylene and GA.


Assuntos
Arabidopsis/genética , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Análise por Conglomerados , Ciclopropanos/farmacologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
17.
Planta ; 225(4): 831-42, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17006669

RESUMO

Ethylene and gibberellins have a synergistic stimulatory effect on hypocotyl elongation of light-grown Arabidopsis thaliana (L.) Heynh. seedlings. A screen for mutants with decreased response to these hormones led to the isolation of a novel allele (ampl-7) of the ALTERED MERISTEM PROGRAM (AMP) 1 locus. The amp1-7 allele contains a missense mutation causing a phenotype, which is weaker than that of the amp1-1 mutant that carries a nonsense mutation. The mutant phenotype prompted the hypothesis that AMP1 is involved in ethylene and GA signalling pathways or in a parallel pathway-controlling cell and hypocotyl elongation and cellular organization. Amp1 mutants contain higher zeatin concentrations causing enlargement of the apical meristem, which was confirmed by cytokinin application to wild type seedlings. Light grown amp1 seedlings have shorter hypocotyls than wild type; however, application of cytokinins promotes hypocotyl elongation of both Col-0 and amp1. We suggest that in amp1 mutants either zeatin overproduction or its action is strictly localized.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Carboxipeptidases/metabolismo , Hipocótilo/enzimologia , Alelos , Aminoácidos Cíclicos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Carboxipeptidases/genética , Mapeamento Cromossômico , Citocininas/metabolismo , Giberelinas , Hipocótilo/crescimento & desenvolvimento , Luz , Meristema/crescimento & desenvolvimento , Mutação , Fenótipo , Zeatina/metabolismo
18.
J Exp Bot ; 56(413): 841-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15642709

RESUMO

Many semi-aquatic plants respond to flooding by elongating the shoot to reach the water surface. This response is initiated by accumulation of ethylene in the plant due to decreased gas-exchange and continued ethylene production during submergence. Ethylene biosynthesis is often limited by the availability of 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, synthesized by ACC synthase. Here, is reported the cloning of a Rumex palustris cDNA corresponding to an ACC synthase gene (RP-ACS1), whose expression is induced by submergence in the long term but does not precede the observed short-term increase in ACS activity. Under aerated conditions, RP-ACS1 messenger accumulation exhibited circadian rhythmicity with high levels in the dark phase and low levels in the light phase, similar to the oscillations in ethylene production under these conditions. ACC oxidase (RP-ACO1) messenger accumulation also showed a rhythmic pattern, but opposite to that of RP-ACS1, and closely resembled the ethylene oscillation found in R. palustris plants that were waterlogged. Together the results indicate that transcriptional regulation of RP-ACS1 may directly control rhythmic ethylene production under aerated condition and suggest that post-transcriptional regulation is important in initial up-regulation of ACS activity upon submergence.


Assuntos
Ritmo Circadiano/fisiologia , Etilenos/biossíntese , Liases/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Rumex/enzimologia , DNA Complementar/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Água/metabolismo
19.
Plant J ; 37(4): 505-16, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14756759

RESUMO

Dark-grown Arabidopsis seedlings develop an apical hook by differential elongation and division of hypocotyl cells. This allows the curved hypocotyl to gently drag the apex, which is protected by the cotyledons, upwards through the soil. Several plant hormones are known to be involved in hook development, including ethylene, which causes exaggeration of the hook. We show that gibberellins (GAs) are also involved in this process. Inhibition of GA biosynthesis with paclobutrazol (PAC) prevented hook formation in wild-type (WT) seedlings and in constitutive ethylene response (ctr)1-1, a mutant that exhibits a constitutive ethylene response. In addition, a GA-deficient mutant (ga1-3) did not form an apical hook in the presence of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Analysis of transgenic Arabidopsis seedlings expressing a green fluorescent protein (GFP)-repressor of ga1-3 (RGA) fusion protein suggested that ACC inhibits cell elongation in the apical hook by inhibition of GA signaling. A decreased feedback of GA possibly causes an induction of GA biosynthesis based upon the expression of genes encoding copalyl diphosphate synthase (CPS; GA1) and GA 2-oxidase (AtGA2ox1). Furthermore, expression of GASA1, a GA-response gene, suggests that differential cell elongation in the apical hook might be a result of differential GA-sensitivity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Etilenos/farmacologia , Giberelinas/biossíntese , Hipocótilo/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Aminoácidos Cíclicos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Divisão Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/antagonistas & inibidores , Proteínas de Fluorescência Verde , Hipocótilo/efeitos dos fármacos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Meristema/efeitos dos fármacos , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Triazóis/farmacologia
20.
Plant Cell ; 15(12): 2816-25, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14615596

RESUMO

Phytohormones regulate plant development via a poorly understood signal response network. Here, we show that the phytohormone ethylene regulates plant development at least in part via alteration of the properties of DELLA protein nuclear growth repressors, a family of proteins first identified as gibberellin (GA) signaling components. This conclusion is based on the following experimental observations. First, ethylene inhibited Arabidopsis root growth in a DELLA-dependent manner. Second, ethylene delayed the GA-induced disappearance of the DELLA protein repressor of ga1-3 from root cell nuclei via a constitutive triple response-dependent signaling pathway. Third, the ethylene-promoted "apical hook" structure of etiolated seedling hypocotyls was dependent on the relief of DELLA-mediated growth restraint. Ethylene, auxin, and GA responses now can be attributed to effects on DELLA function, suggesting that DELLA plays a key integrative role in the phytohormone signal response network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Etilenos/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Germinação/fisiologia , Giberelinas/farmacologia , Proteínas de Fluorescência Verde , Ácidos Indolacéticos/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Família Multigênica , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...